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ABSTRACT
13/72

The multi=phase media problem is inherently a statistical one,
However, in the continuum mechanics approach to the problem, the
heterogeneocus multi~phase media is considered to be a macrosconically
homogereous mixture of discrete phases of the constituents, Since the
fisld sclution to the problem is intractable, excevt in very special
cases, a practical resolution of the problem is to determine the
bulk proverties of the mixture in terms of the vroperties of the con-
stituents and the phase-volume-ratios, With these parameters, the best
one can hope to do is to bound the effective bulk proverties as has
been done for isotronic and anisotropic elastic materials by use of
the minimum theorems of classical elasticity,

In this paper the author has initiated the investigation of the
multi-phase problem for hypoelastic materials and, more generally, for
linear preferred materials., Using classical elasticity as a guide, the
author has developed some variational, uniqueness, and minimum
theorems anslogous to those of classical elasticity, In addition,
the possible existence of a deformation energy density function is
investigated and discussed, Such a function is derived for two special
forms of linear materials. Finally, the simple extensional deformation
problem for such linear materials is investigated and discussed using

two relatively simple materials as exsmples,
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AN INITIAIL INVESTIGATION OF THE CONSTITUTIVE
EQUATIONS FOR MULTI-PHASE HYPOELASTIC MATERIALS

I. General Theory of Multi-phase Media,

(a) The problem defined: The multi-phase medium problem mev be

stated in the following manner: To predict the bulk mechanical (or
electrical, thermal, etc.) properties of heterogeneous media in terms
of the »roperties and geometry of the constituents, By heterogeneous
medium we mean 2 mixture of discrete phases at the interface of which
continuity of the stress and displacement vectors is assumed so that
the aggregate may be regarded an a continuum, It is assumed 2 priori
that the properties of the individual phases are known.,

The problem as stated above is much too general to have any hope
for solution end must therefore be more explicitly defined. To do
this, the most logical first step is to restrict the constituents to
materials of the same class; e.g., elastic, plastie, viscoelastic, hypo-
elastie, etec, Also, restricting the number of different phases might be
done although this appears to be of limited benefit., Even with these two
restrictions, the problem remains extremely formidable and one is natur-
ally led to the other major aspect of the mixture, namely the geometry
of the phases,

Generally the geometry of the mixture is assumed to be random,
although in some cases it is desirable to consider specific geometries,
Furthermore, much of the successful vork done to dste has been accom-

plished by restricting the phase-volume-ratios of the constituents; that

is, the ratio of the volume of a phase to the volume of the multi-phase



medium, In this regard, many investigators have considered the specisl
multi-phase mediumcalled a suspension in which one phase is thought of as
matrix in which 211 the other phases are suspended in the form of
inclusions (spheres, ellipsoids, etc,)., The susvension may be dilute or
finite depending on the PVR of the inclusions,

Varinus other tynes of het2rogeneocus mixtures have been studied
ir. d+ts21l by various investigators too numerous to list in this paver,
The reader is referred to = paper by 7., Hashin [1]1in which there apnears
an excellent bibliographvy of methods and results of investigations in
this field. 1In this respect it might he well to mention that the problem
of field analysis of heterogeneous media is at a muct earlier stage of
develooment than the problem of bulk pronerties of heterogeneous media,

This paper makes no attemnt at the former problem,

() Mathematic formulation: The multi-nhase problem outlined

in (a) is of such charactesr that one is led to exmect thet its solution
would be of statistical nature, Indeed, much recent work has been devoted
to this method of approach. However, most of the results ohtained to

dete on multi-phase media have heen arrived at from a continuum mechanies
anproach; and, since the theory of behavior for hyveelastic media is at

a2 relatively early stege ., develowment, the author has chosen to undertske

the development of some basic formulstions recarding the hehavior of two

1, Numbers in brackets refer to entries in the bhibliogranhv,
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[

types of hypoelastic nedia, It is felt thet these results will have
two immediate benefits,

(1) The behavior of hvnoelastic meterials can conceivably shed
light on the overall concepts of the hehavior of continua
in genersal, ranging from classicel elsstic media to the
viscoelsstic and viscous fluid medin,

(2) These results are viewed as being necessarv to formulste
the continuum menh~~+ -+~ ~~proach to the multi-phase

hypoelastic medium problem,

In this latter statement, it is fully recognized bv the author that
the ultimate solution and complete understanding of the behavior of multi-
phase hypoelastic materials, as with other multi-nhase media, probably lies
with a statistical investigation of the nrotlem, This is left for future
consideration,

In general, the physical constants of heterogeneous media are
random Tunctions of the space coordinates. However, in the centinuunm
theory, the phvsical constants are assumed to be space indemendent; that
ir,thelnediuﬁ s considered to be statistically (or macroscopically)
homogeneous, Further, a statistically isotropic medium is one for which
the physical constants are assurmed to he independent of anv rotation or

reflection of the body. Consequently, the multi-phase nroblem can be

2 . . . : . ' , . .
° While one of the media considered in this paper is net hypoerlestic, in

the strictest sense, it is nonetheless referred to as a hvnoelastic medium
at this point. The distinction will be made more clearlvy in Chapter III,



formulated in the follewing manner: If & renresantative vniume elierent of

a statistienlly homogenenus and isetronie multi=nhas: medium is subiected

to space constant strains (or strain rates), find the zffaztive stress-

strain relation,
j) (1.1)

Or, if the mcdiumis ‘ubjected to snace constant stresses, find the effestive

strain-~stress relstion
e.. = R{zr ) (1.12)

where the constants anpraring in the operators R and L are called the

effective vhvzicel constants, of the heterogeneous medium., "learly the

number of constants and the forr of the “perator will denend unon the

physical nroverties of the vnhases involved in the mixture, At this point
we tacitly assume that there ars no bodvy or surfsace counles acting eon the
mecium sn1  ence the true stress tensor 1 will be swrmetrio.

In this paper it will be more convenient to formulaste the problem

in terms of the rate of deformation tensor.

d = 1/2 (v + v ) 1.2
; /(i’j i (1.2)

where v is the ith component of the velocity vector and the comma denotes
i

covariant differentistion in generalized coordinates or ordinary partial

differentiation in rectangular cartesian coordinates with respect to the

Eulerian space variables, X5 ,1= 1, 2, 3,
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For any representative volume element, V, of material, the average
deformation rates can be expressed in terms of the velocities on the

boundary S of the volume by

R O
iy 7 v 1447
vV
1
= —/(v ) oav
2V v . .,1
= i v.ny +vn ) das (1.3)
QV/ n* °

[o]

where ni and v, are the cartesian components of the outward normal and
i
surface velocity, respectively, Similarly, the average stresses can

be expressed as follows:

1] v IV 1

1 1 )

= T + o o + -
gvé[(rikxj)’k (’Tiji),}{] av S V[Tik,kxj Ty ,kxi] av
i /¢ 1

= 2V/é;[tikx3nk + tijink] as - E/{i[Fixﬁ + iji] pav
l (o] o] 1
oV [Tixj + zji] as QV/[Fixj + iji] pdt (1.4)

S v

o
where Ti and F_ and the cartesian components of the surface tractions and

i
generalized body force, respectively, and o is the specific density,
In these integrals the representative volume element is assumed to be

large in comparison with the phase region size, Also we see that boundary

velocities and tractions of the form
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o]
(o]

= 4 1.
vi ijxj (1.5)
[¢] [o]
T, = 1 n (1.6)

o
e

e
Tac

produce space constant strain rate fields dii and spaca constant stress
o ]
fields 7t,,  if F vanishes and areytherefore, suitable for experimental

il -
determinations of stress-strain rate relations,

The question which now arises is the following: knowing the
phase=-volume-ratios and the mechanical properties of the individual
constitutents, what information can te found in regard to the effective
constitutive equations of the form (1.1) o (1l.ia) for a macrosconically
homogeneous and isotropic multi-phase med:ur? In most cases the nroblem
is intractable because in order to use our definitions (1.3) and (1.4)
in conjunction with (lgl),sav, regquires a knowledge of the stress=-strain
rate fields which are usually indeterminate, Thus, we are led to a

usually more fruitful formulation of the problem in terms of energy

expressions,

(c¢) Energy relations of continuous media: One of the funda-

mental axioms of continuum mechanics is the Principle of Conservation of
Energy: The time rate of change of kinetiec plus:internal energy is
aqual %o the sum of the rate of work ¥ of the externa)l forces and

all the other energies that enter or leave the system per unit time,

o (K+E) = w+ U (1.7)



Te

where K and £ are the kinetic and internal energies, respectively, and

U represents the mechanical equivalent of the ath kind of energy per

o

unit time, e.g., heat enerpgy, electrical energy, chemical energy, etc,

We write

E = / gpdV (1.8)
v

where € is the internal energy density per unit mass,

For a continuous medium

L av
5 fr)v v
° D—
K Dt Ov v dav
o .];- D
= /pvividv + Q[Vivlﬁf (pav) (1.9)
Y \'4

and
o D
E = —[epdv
Dt v

- [;pd\l +[5D~ (pav) (1.10)
v Dt
v

Also, the rate of work done by the surface tranctions and

body forces f is

W =/ v, +/f‘iv 0dV
£,vpdV = [(r + /fivipdv
v

LAV + , .
Ty 483489 ffivipdv (1.11)

T ds +

1373V

Tij 4Jv 4av +

<:\ 2N
<\*\ <



If we assume that the only other types of energy are heat

energies, then,

U =/[qun.,d8 + /phdv
g % Y
[

q, .dV + /ohdv (1.,12)
1,1 v

where g is the heat flux vector through S and h is the supply of heat

energy per unit mass created by energy sources in the body.
Substituting (1.9), (1.10), (1.11) and (1.12) into (1,7)

and rearranging terms, we have

/(;v v, + €) E{(pdv) + (Zp -1,,d . =-q - ph) av
' 2°171 D v 13713 T V1,1

= +£.p=pv.) v,av
0 EUI ML

The first integral on the left vanishes by conservation of

mass while that on the right vanishes by Euler's ecuations of motion,

Hence,

E [ epdV

v
£(Tijdij + 9 5 + ph)dv (1,13)

vhere Z; Ti1du1dV is sometimes called the stress power, mechanical
J 1

pover, or rate of deformation energy.

(a) Multi-phase avperelastic media?! In order that the

reader have a greater appreciation of the results which will be presented
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in later chapters, it might be well at this point to discuss briefly the
multi-phase hyperelastic meé¢ um problem, By an ideally elastic medium

[2] we mean that (1) no electric, chemical, or thermal changes occur

during the deformation process, (2) the body possesses a natural unstressed
uniform state to which it will return upon release of external loads,

and (3) the minimum energy re-uired to produce a given deformation is

available for full recovery. Consequently, the constitutive equations

are derivable from an energy density function, (Note: If statement

(3) is true only for quasie-static processes, then the medium is termed

elastic rather than ideally elastic.)

For a purely mechanical system undergoing a reversible adiahatic

deformation, equation (1.7) becomes

or

Wat

ak + atE (1.14)

As a consequence of statement (3) we see that if the body undergoes

some loading and then returns to its initial conditions

§d6=0

Now, from equation (1.13)

E = [&:pdV = ‘rﬁdi’dv
v ] .

‘ av, = t,,4 fo av

Epo o [ i} i3 g o}

v e

° Vo

or
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where V, and p, are the volume and density of the underformed body,
respectively. Hence,

o

pe = 1 d, (1.16)
13 1j
If we define I as energy density ver unit underformed volure,
then
E= pge (1,17)
so that
= - P
E = [spdv = )(,:mg av
Y [e]
N v
= [Zdvo
Y.
Thus, from (1,16) and (1.17) we obtain the well known result
P % e r
o T T13% (1.18)

Now, for a material undergoing infinitesimal elastic deforma=-

tions and rotations we define the strain by

where u, are the cartesian components of the displacement vector. Then
i

. . °

‘uigj + uj ‘i) = 4

noj-

e, .
id ij

Substituting this expression into (1,18) and recalling that €, and hence

Y is a function of the strains only, we have
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S X o .
5—- r-‘-e e” = Ti,jeij
(o] ij

Thus for an ideally elastic material

af + 3I

e
= = : ) (1,19)
ii p, aeij eji

T

That is, the stresses are derivable from a potential I called the strain

energy density,

In the case of a linearly elastic material we have constitutive

equations of the form

13 cijkgekg

or

e = T
13 Y4 9kp kg

where the C's and y's are possible space functions but are independent

of the stress, strain, or time. Hence the strain energy density becomes

8 quadratic in either the stresses or strain,

3c
2% 9x2%13%ke

or (1,21)

_L )
AR AR )

In the investigation of multi-phase elastic medium the minimum

energy theorems of elasto statics are used to obtain bounds on the constants



appearing in the constitutive equations of the statistically homogeneous

heterogeneous mixture, These theorems are stated as follows [3]:

Theorem of Minimum Potential Energv: OFf all the kinemati=

cally admissible displacements which satisfy the given boundarvy condi-
tions, those which satisfy the equilibrium eouations make the potential

energy

o = /\;E(e)dv - [Tiuids - [fiuipd\l
S v

t

an absolute minimum, where £y is that portion of the surface over

which the tractions T are prescribed.

Theorem of Minimum Complementarvy Energv: Of all statically

admissible stress fields which satisfy the given boundarv conditions,
that which satisfies the kinematic conditions make the complementary

energy

Yy = [Z(T)dv - [‘Taueds
v 'S i“s

u

an absolute minimum, where Su is that portion of the surface over
which the displacement u is prescribed,

In the heterogeneous elastic mixture no restriction is placed
on the shapes or sizes of the inclusions of one material (or materisls)
assumed to be imbedded in a matrix of the other material., The phases
themselves are assumed to be homogeneous and isotropic, whilg it is

supposed that the mixture is homogeneous on a macroscopic scale, In

12,
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the following discussion numerical subscripts will distinguish the phases

while quantities without subscrints will refer to a representative volume

element of the mixture,

The phase~volume-ratios of the two phases will be denoted bv c. and

1

cz, respectively, where cl + c, = 1. Thus by the definition of

average stress and strain, equations (1,3) and (1.4), we have the obvious

relations:

7 S
le_1 + coe, (1,22)
The stress-~strein and strain-stress relations are

11 = Lle1 el = HlTl

1, = Loe, es = Roip {(1.23)

in the notstion of eauations (1.1), (1.1a)., Hence, since the phases are

assumed uniform and isotropic, we have the reiations

~ |

= clLle1 + c2L2e2 = L;
e = )Ry T, * ChRpTp = RT (1.24)
Let
;1 = Me, e = Ase, with Ay * cph, = I
and ?1 = BT T, = B,i, with ¢ B + c,B, = I

171 272



ik,
where T is the unit matrix, Then from (1,2k)}

L

e Lihy + ealnhy (&)

R

clRlBl + 02R2B2 (b) (19?6)
Therefore, if the average stress or strain in either phase can
be frund for arbitrary overall values, then the elastic bulk proverties

of the mixture can easily be found., For a mixture that is meacroscopically

isotropic only two elastic constants must be found and this may formally
be done by choosing two arbitrary independent strain fields at will,
such as pure d:latsticn,pure chesr, ~imple extension, simple shear, etc.

For example, suppose we write the stress=-strain relation in the form

T = 2ue - %Eo‘ + k

i 147 o %kkbiy &k 011 (1.27)

vhere u and k are the rigidity and bulk moduli, respectively. Then
for a pure dilatation with stress T and cubical dilatation ;kk of the

overall mixture, equations (1,22), (1.23) end (1.27) vield

T = cke + ¢ k. ®&
’ ] kk
11 Kkl 22 5
- = c; c%kk
1k 1 kk] + 2 2
kl ke

If we define

Sk, T %1%k Skk, T P2%kkr VIPR B0t 8% T M
Tkky = PiTkks Tkky, = DP2Tygs With Dbpcy + bocp =1
Then
k = alclk1 + 32°2k2
or (1.28)
L byc . breo
k ky ks
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Similar results in terms of y can be obtained by letting the
second state of strain be one of pure shear,

Results (1.26), or in particular, (1.28), must be viewed as
being formal since it would be an extremely difficult exmerimental pro=
blem to measure the average strains in the inclusions., A crude approxi=
mate treatment, called the Voigt estimate, assumes that the strain
throughout the mixture is uniform; that is, A1 = A = I, Then

2
equation {1.26a) becomes:

L = c. L. ¥+ e.bL,
v i1

or, in terms of k and u

= c k + c k

v "1 22
(1.29)
i = i +
Uy Ci¥y T Ely

Obviously, this approximation is tantamount to a simple
volume weighting of the phases.,
Another approximation, called the Reuss estimate, assumes
that the stress is uniform throughout the mixturej that is, B1 = B,

= I, Then equation (1.26b) becomes

R 11 22
or, in particular
i . & ., &2
kOB K

(1.30)

=3 M)
no gr
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wnich is equivalent to a simple weighting of the inverse moduli,
Needless to say, neither assumption is correct since the

firgt would result in discontinuous tractions at the interfaces while

the second would result in discontinuous displacements, Both egtimates

become poor when the phase moduli differ by more than a factor of two,
A more fruitful approech to the multi«phase elastic medium

problen stems directly from the previously mentioned energv theorems of

elastPstatics, For a linear elastic material the strain energy per unit

volume is
N 1 L, .
L= $re = S t(Rt) = 3 (elLje {1,31)

Consider any unit volume of the mixture and let it be subjected

to prescrived surface displacements that would nreoduce 3 uniform strain

e in & homogeneous material, But these are preciselv the saversge strains

in the heterogeneous mixture itself since these averages are uniquely
determined from the surface displacements alone (see equation (1.3) ).
Therefore, the total strain energv of the mixture can be evaluated as

1l -
the integral of E'Te since T is an equilibrium field of stress and the

strain field (e = e) is derived from a displacement field which vanishes

on the surface. Hence, we have

from the definition of 71, A similar result can be obtained by nrescribing

tractions of the kind that would produce a uniform internal stress 1 in a
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homogeneous material, Then if the volume is a representative volume

element, we have for either type of boundary eondition

2 = 7Te = IRY = ale (1.33)

Now, according to the theorem of minimum notential enerrgy,
the actual strain energy in the nmixture does not exceed the energy of
any other fictitious {unequilibrated) state of distortion with the ssame

surface displacements, Hence, if we take as the second state s uniform

st o e = = ]

ate e el €5 » then

‘ ele < e (elLl + 02L2) ; (1.34]
i Hence, the metrix

’ ciLl + c2L2 w I is positive

) semi~definite and the restrictions on its components can be determined,
In this manner an upper bound on the moduli can be obtained, In the
case where the mixture is assumed isotropvic, equation (1.3L4) gives the
simple relations
k <k, uoS M, (1.35)

in terms of the Voigt estimates (1.29),

Similarly the theorem of minimum complementiery energy states
that the actual complementary enerpgy doss not axcesd that of any other
fictitions (kinematically incompatible) state of stress with the same

surface tractions. Thus, taking the miform stress field, T = T4 T Toe

) as the second state of stress vields
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TRT S TleyRy + epRp)¥ (1.36)

wvhich furnishes upper bounds on the compliances of the mixture material.

For the isotropic mixture, these relations are

L=< i i <1
k kR u UR
or
k Z kR u : fUR (lq37)

in terms of the Reuss estimates (1,30),

Recalling that Young's modulus E can be written as

=1 fw

1
== o+ % (1.38)

it follows that relations (1.35) and (1.37) can be written as

1
L o« L. Z (1.39)
Ey E R

[o] (o4 -]
< . 2 =f S E S E
El E, R v (1.L0)

Generally, these bounds on the elastic constants are rather wide.

or

By making some additional restrictions and employing some rather elaborate
variational principlesHashin [4] has obtained a reduced range for the
bounds and Hil1[11] has shown these bounds on the bulk modulus to be

the best possible in terms of only the concentrations and the moduli of

the constituents.
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(e) Objectives of investigation: With this brief background

of the multi-phase medium nroblerm 1ae should now have some concept of the
various individual problems involved in the overall problem of multi-
phase media, This investigation is an effort to resolve some of these
initial problems with regard to a class of continuous medias, namely,

the hypoelastic3 naterial whose mathematical characteristics are dis-
cussed in the following chavter >f this paper.

First, for two relatively simple forms of the constitutive equa=
tions of hypoelasticity, the author will derive an expression for the
energy of deformation for the respective materials., Second, a solutinn
will be presented for a simple extensional deformation process for each
of the materials, OSimple extension was chosen primarily because it is
hoped that eventual experimental verificetion of some of these results
can soon be undertaken, ané¢ it is snticipated that simple extension
offers the best possibility in this respect. Finally, using the theorems
of classical elasticity as a guide, some minimum principles and unique-
ness theorems for this type of medimm +ill be developed which shed
considerable 1light on the possible solution of the multi-phase medium

problem,

See footnote on Page 3,
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II, Hypoelasticity,

(a) The constitutive equaticns: Hvpoelastic theorv is an

attempt to explain or predict the behavior of materials with short
memorv, as distinguished from an elastic material which has a verfect
memory of its natural state and from a stokesian fluid which has

no nemory of its past, A hypoelastic material has a memory of the
state just passed and thus the theory is most esasily formulated in

terms of rates, The simplest rate theorv takes the form
stress rate = f (rate of deformation) (2.1}

While the rate of deformation is a well defined kinematic
quentity, there is no unique wav to define a stress rate cr stress
flux, The primary requirement for any defined stress rate tensor for
use in the constitutive equation (2.1) is that it should venish when
the rate of deformation tensor venishes; i.,e., that the stress rate
tensor should be unaffected by rigid body motions, Certainly the ordin-

. , . Ds . . . . .

ary material time derivative Z'i3 fails to srtisfy this requirement.

Dt
However, the stress flux first defined by Jaumann [5] as

o
°

+ = i Q
"1 Tig ¥ Ty T TkI%ik (2.2)

where w,J is the rate of rotation tensor
1

1 avi ;}v‘)
w,, = 2 — -

el ax1 Bxi

satisfies this requirement in regard to arbitrary rigid body rotatioms.
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"N
Furthermore, since for a rigid motion di1 = 0, Ty 4 would be unaffected

by the presence of terms containing d,, insofar as our requirement of

i3
gpatial invariance (material objectivity) is concerned., Hence, the
various other forms for stress rate derived by Truesdell (6], Oldrovd
[16], Rivlin, etec., differ from (2.2) merely by terms which can be incor-

porated into the right side of our constitutive equstion (2,1},

For example, Truesdell’s stress rate

V) [

T T, * 1.,V - T, V. - Vs
i3 iJ 13'pyp ~ Tip'j,p TpiVi,p

(2.3)

differs from Jaumann's by

i3 PeP Tipdpﬁ - ijdip

which can clearly be incorporsted into the cnnstitutive equation,
#s will be seen in the subsequent develooment. For a mare detailed
discussion of the various tensor time derivatives, see Oldroyd {17] and
Thomas [18) gnd the Appendix of this paper.

The constitutive equstion proposed in (2.,1) is a special case of

the general tensorial relation

- T
s = f{d,s) s = z=. . . dimensionless stress
H (2.h)

U . , . shear modulus

where the various gquantities are evaluated in some spatial reference

frame X Homogeneity and isotropv are implied by the fact that the
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material coordinates xi and the material deseriptors 9& do not
appear explicitly in the function indicated in (2,4)., Further, if the

meterial is to be spatislly invariant, then

where the primed quantities are now evaluated in any other spatial
frame x'i obtained from the x frame by che full orthogonal group of

trensformations Q(t) where

QR = Siu

iRy = Oy

Thus, our invariance requirement becomes

Qf(d, ¢3Q~1 = rlqaq t ’ QsQ™t)

i.e., T is a hemitropic function of d and 5, If f is a polynomial

in d and s, then Riviin [T} has shown that

= 2 2
fld,s) = Dogl *+ Appd * Ayl + Agys + A 5T+ All(sd + ds)

. 2 2
+h (a4 as) 4 A (6% + sa”) + A (a2 + 4&%%)

o1 oo (2.5)

since, from the Cayvley-Hamilton Theorem, all higher powers in s and d
can be expressed in terms of the first two powers of s and d, The

coefficients AaB are analytic scalar functions of the ten invariants
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1
D, = d D, = Sd., 4 -d 4, . b o= la
1 i1 2 204y 33~ il 31 3 | iji
T = s T, = s s -s.5..) T.o= is..]
1 i1 2 2744733 13731 3 P13
M = d.. N = s. s d . P = s 4 d .
1% ij 3k ki qu Ik ki
0 = (2.6)

g,.8 4 &
13 3k kg ot

The coefficients are further restricted by the First Hypothesis

of Hypoelesticity: "No constitutive coefficients of a hypoelastic

meterial shall carry a dimension independent of the dimension of

stress, Thus, the physical material moduli shall have the dimension

of [stress]® for some a; and, in perticular, this restriction prohibits
the moduli from being functions of time which eliminates the ‘relaxstion
effect' associated with time dependent moduli", Hence, equation (2.4)

must reduce to the form

£

Siy " Aijkldkz (2.7)

where Ai must be dimensionless functions of stress.

Jke
In light of this last statement, it now becomes clezar that all
terms in (2.5) containing powers of d higher than the first must

vanish, Thus

A20 21 22

and A must be linear in d, Hence, we now write

10’ All’ AlE
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A 2
5 = DlAOI + Ald + DlAgs + D1A3s

+

2
MA T + A(ds + sd) + MAgs + MAss

2 2

+ szd) + NAlOs + NA_ s (2.8)

+ NARI + A(ad
8 glds 11

where the Ai are dimensionless analytic functions of the three stress

invariants, Tl’ T2, T30
Truesdell has defined various classes of hypoelastic materials

which are characterized by the highest degree of s appearing in

equation (2.8),

Hypoelastic of grade zero. The right side of (2.8) is independent

of s, Hence

v
s = DlAOI + ﬁli; Ags Al constants
or if,
AL = 2 A =1, th
o = 3o Ay =1, then
= + e
2us, M By + 2udyy (2.9)

which is directly similer to the constitutive equations for a linear,
isotropic, elastic material.

Hypoelastic of grade one. The right side of (2.8) contains up to

the first power of stress., Hence



M: + i + a +
8 Dl(eO leO)I + (31 ijl)

DBs + MBI + g (ds + sd) (2,10)
12 b 5

with BO’ Bl, Bh’ 85’ Yos Yy being dimensionless constants,

Hvpoelastic of prade two: The rignt side of (2.8) conteins un

to the second power of stress, Hence

. > |
= D * Ty 4+ ol 4+ 6T) + s
s 145 170 %"y o'p! (8, 1M1

+ aT? + &1

d + D + T
11 1 ?) 1(82

)s + D8 2
1Y2 s 1 3s

+ M(Bu + yth)I + (BS + YSTl)(dS + sd) +

MB s + NBI + B (ds° + s24) (2.11)
6 8 9

with the B's, yv's and a's and s's being dimensionless constants.,

Note that in establishing all of these constitutive equations,
no sssumptions have been made in regard to the magnitude of the stresses
and strains involved or the time interval over which they occurred and hence
are fully general for all types of motion,

(b) Field equations and admigssibhilitv: The constitutive

equations of hypoelasticity (2.7) are differential equations of the
first order, which are not in themselves sufficient to define a hyvno=-
elastic material, One must prescribe some conditions, such as initial

conditions, which are admissible according to some criteria [8],
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{et V be 2 smooth menifeld of material nnints over which we
9% (x)

ard a disnlacement gradient fielad %
k

assign a stress field Tiﬁ

subject to the compne+ibility conditinnz

Such an assignment is called a stress-confipuretion palr and is denoted

by

1. .X%,
{13 1,K}
Given two such stress-~configuration pairs

b

T, X: o T, b 3

{139 19}"‘; {1‘19 1:[(}2
it may or mgy not be possible to find a selution of (2,7) for which

T, . ri- i it 8 {”, . riv fina

{ i1, xhK)}l gives its initial values and \1j,X1,K}2 fgives the final
values, However, if we group the stress-confipuration pairs Into classes,
two such pairs being in the same cless if it is nossible to get from one
to the other by a solution of (2.7), then these classes are equivalence
classes and are mutually exclusive. !Hence, a revresentation of a hvpo=-
elastic material is given by (2.7) and one such enuivalence class of
stress=configuration pairs.

We nowhave the basic field equations of trooelasticity.



27

(i) Conservation of mass:

(ii) Balance of momenta:

o

+ R . =
Yy Yoo =0

Iji 11

(i11) Constitutive equations for isotropic material:

or s = A
Slj ij iJke kg
L 111
sij T :

vhere A“sz is an isotropic tensor function of the stress;
1

along with an equivalence class of stress-coafiguration
pairs, These equations, of course, reduce to the previouslv

indicated special forms for the various grades of hvpoelastic

materials,

(iv) Kinematic relations:

A e

+ -
i iy T1x% T3

or other forms of the stress flux,

]
+
<
e
1]
M,LH
<
[}
<

v
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In addition we have

(v) BRoundary conditions: prescribed tractions and/or velocities
(or displacements) on the surface of the bodvs

(vi) Initial conditions: any initisl stress and displacement
field consistent with the momenta eaqustions and the compataw-
bility conditions and which are admissible for the equivalence

class of the hypoelastic material,

In concluding this section of the vaner, a few comments regarding
the distinguishiné features imbedded in the formulation of the hypoelastic
theory seem appropriate, First of all, for our hypoelastic material
the constitutive equation III is in no sense an approximation; it is
completely consistent with the principles of mechanics for all types
of motion, and is dynamically admissible for strains and rotations of
any magnitude, Furthermore, a relation between stress and strain is
the outcore of the theory and the form of this relation will depend upon
the manner in which the deformation takes place and the initial con-
ditions of the problem, This will be seen more clearly in the ensuing
work,

(¢) Preferred Linear Materials: While the foregoing discussion

of this chapter was confined to materials with constitutive eguations

of the form

£(a, s)

2 4
"
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some extensive work has been done by T, Y, Thomas {10, 12] for materials

with constitutive equations of the form
s = f(p, d, s) (2,12)

or

S

s = f (p, d, s) (2.13)
i} i)

where the functions fij are polynomials in the components sij and dij
with coefficients depending on the density., Furthermore, Thomas has
defined a preferred system as one in which the fij are linesr in dij and
at most guadratic in sijo Such preferred systems are not too general
for application, but are nevertheless of sufficient generality to pro-
vide an acceptable description of the dynamical behavior of an important
class of materials,

Because of the scalar character of the densitv p, it is not
necessary to alter any of the previous formulation of this chapter
which pertained to hypoelastic materials except to say that the coeffi-
cients appearing in the various expressions (2.5),(2.7), (2.8),(2,10)
and (2.11) may now be functions of ¢ or the dimensionless ratio, pk%

Hence in subsequent work it will often be convenient to formulate the

discussion in terms of preferred materials,
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ITII, Deformation Energy for Preferred Linear Materials,

(a) Generasl Considerations: Recall that the rate of work done

by the external tractions and body forces on a mechanical system composed
of a moving volume V(t) of a continuous media is given by

D 1 ,
Vo= S, [gpvividv + [tijdijdv (3,1)
Vit) Vit)

where the second term on the right represents the time rate of change of

the deformation energy which will be denoted bv E. Then if

DE °
ot " / peav. = é’iﬁ"-i:‘d"
(

Vit t)
it follows that

pe = Tiﬁdij (3.2)

Using the results of Thomas [9], [10], one can now establish the condi-
tions under which an energy density function e will exist end be a
scalar invariant of the tensors t and 4 and the density p of an isotro-

pic linear media with a constitutive equation of the form

T = f_.(p, 1, d) (3.3)
i

il b

where f“j are hemitropic polvaomials linear and homogeneous in 4.

3

Proceeding on the hypothesis that e is a differential scalar

invariant, we write

° 3e pe de 3e * 1 .
= — e + Ty = T ol
€ 3p Dt 3719 i 9dyy i Pidiy (3.4)
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wvhere we have utilized the equality of the absolute time derivative (*“)

D
and the totel time derivative (5%) of & scalar invarisnt of t and d. But

from equation (2,2),

“ o

a ., +d, . -4
i} iJ 1Kk dkj”ik

o~

Hence, the coefficients of 4

13

the invariant e cannot depend on 4 explicitly,

Now let us define the stress invariants

2
E = trt = 71

0 = tyrr = 1 T,.
11 O
and thus
30 ) )
= ¢ ‘—é*‘ = 27 -—5—
3T 9T , aT
i3 i3 i3 1} 1]
Since e is a scalar invariant, we may write
elp, 1) = elp, 0, £,2)
Hence
Jde de de Je
———— = el B +  — B ——
5, 56 13 3E 2144 5C o
Also, we recall the equation of continuity
+ = + =
P PV .k P Py 0

in (3.4) must vanish identicaliy, i.e,,

3
= ¢ =
SRR

3t o«
ik k3

ik kj
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Substituting (3.5) and (3.6) into (3.4) yields

de T je T de * 3e
- —— —— e N o T_——— = ln v
dek 3% T4 38 2TijTiJ 3¢ 3Tk TRdTiy 5t ptljdlj

or in the trace notation

A ES &K
—0trd 28 4+ trd 4+ 2trred® 4+ 3trin2e = Lerra (3.7)
3p 30 oL g 0

which must be satisfied identically if e(o, 1) is to represent the
deformation energy per unit mass of the material,

Lemma on Independent Scelars: Suppose the nrincipal stresses T, are
i

distinet and let Di = dii (no sum) be the diagonal components of di7

relative to a local principal stress coordinate svstem at some srbitrary

point P, Then

dg

i
34
a
i}
(=)
+
J
+
=]

it 1 2 3
Tikdki = trtd = TlDl + 12D2 + 13D3
2 2D . 2 . 2
Tijrjkdki = trvr d = 11 1 T5 D2 13 D3

Consider this as a system of equations for determining the Di°so The

determinant of the coefficients is

1 1 1
A = Ty T T3 = (11 - 12)(12 - 13)(13 - Tl) »
2 2 2
Tl T2 T3

0
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and hence the svstem will have a solution for arbitrarily assigned values
of trd, trrxd, trredo We will use this result in what follows,

(b) Preferred material of prade zero: Guided by Thomas [10],

let us consider a material having constitutive ecuations of the form

EN

= Po .
Ty =2 [xakkcﬁ + 2u dij] (3.8)

which we shall call a preferred material of grade zero, substituting

this into (3.7) we obtain
motrd 25 4 20 (3% 4 2u) trd 28 + 220 (htrg trrs+ 2ptrrd)dS
dp o gh:1c) 0 ‘ IE

+ 3P0 ()xtr'r2 tra + 2utr12d) %2 =1 trra
P p o}

or

Ptrd + Qtrtd + Rtrtcd = 0 (3,9)

where

= p22 489 (3 42y Je 4+ B0 oe P2
P PS> + - (3 2u) e 3_.(2Atrrgz + 3atrr 5t) (a)
= ) Po de _ 1 b .10
Q o U L - (v)(3.10)
R = 63-9-11-35- (e)
o g

Now, from the lemma, (3.9) must be satisfied identically in trd, trtd,

2
and trt 4, Thus
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From (3.10c) we see immediately that

elp, 0, £, 2) = elp, O, &)

1]
1]

while from (3,10a, b)

- 022 4 Po (3% 2u) 28 4 2xP0tyr 38 = (&)
dp o) 30 n 3k
0 ,
ylo, 8 L . (b) (3.11)
p £ p

If we assume e to be independent of p, then

Peo de Po de
—— w—— + v Yy —— =
S (30 + 2u) 55 2)\p " 3% 0
de
——— - 1 = O a
boou 3t (3.12)
Hence
1
e = it %+ 6{6)
. d¢ Ap 6
D (3A + 2u) = + g—-dl— = 0
) ae huDo
.2
e A8
¢ = -
huoo (3x + 2u)
Thus the deformation energy density for this case is
2,
= T (g - T2y (3.13)
e = IHJOO E - 3)\ +2u 3ul3

This form is similar to that for the deformation energy of a linear

isotrope elastic media, and, in fact, from (1.17) we have
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1 2 .
T Z (- e (3.1L)
by 30+ 2

(e) A preferred material of grade one: Let us now consider

a special type of grade one material having a constitutive equation of

the following form

T =2 &, + 2ud = _ 4. 7T
13 Kk 1 M55 T 2 %k 'i3

(3.15)
This material was chosen because of the pvarticularly interesting form of
its energy of deformation density.

Proceeding in exactlvy the same manner as for the material of

grade zero we obtain

1 9
P = -p-a-?- + (32 +2p = 'é‘tr'r) - + (2xtrt - trre) de
9p 96 £
2
+ (3rxtrr - %‘trr3) 2% (a) (3,16)
= hy™ . = Y
Q u 3E ) (bl
o€
R = 6y 3T (c)
From (3,16c) we see that
e 8 e (p,0,8,2) B e (p, 0, E)
while (3,16a, b) yvield
de 1 de de _
..pap + (32 + 2y - 5@) =0 + (2)0 - 5)33 = 0 (a)

de 1
by — o = = b .
M 3E > 0 (v) (3.17)
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If we assume a solution of the form

e = "L'[s + ¢(8)]

hup
we find
2
$ = - =22 (3.18)
32 + 2y
Hence, for this case, the deformation energv density is
1 202
e = = (¢ = )
e 30+ 2u (3.19)

vhich is, once ageain, similar to the form of the strain energy of
an isotropic elastic media,

(d) Distortion and volumetric energies: Because of the similar

formal character of expressions (3.13) and (3.19) to the energvy of
deformation for an isotropic elastic media, it is possible to define

other analogous expressions, Recall that

pe (3.2)

d
T13%
Let us define the stress deviator tensor and rate of deformation

deviator tensor by

_ 1
dgq = 4 y - Etrdéij (3.20)
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where 6 = trt, Then

a "ol et (3.21)
= + L=
Tij i3 TiJ 13 3 8trd 3.21
and
= = % 0?
E = 1 T, = E*+ 79 (3.22)
_ i3y 13
where
* * * *
E¥ = 1 1 = 1T,
lJ :‘.l 1:1 1j
since
q% = tri* = 0
kk
If we define
de*
* %*
p= = 1 4 (3.23)
at B Iy
d¥e 1 /
r— ga Qg)l
v $ptrd (3.2h)
then clearly e can be represented as
e = e* + *¢ (3.25)

In accordance with the usual interpretations used in classical
elasticity, we can consider e* to be the energyv per unit mass due
to distortion; i,e., change of shape, while the function *e is considered
to be the energy associated solely with the change of volume. Ve call
these quantities the distortion and voltmetric energies, respectivelv,

Recalling relations (3,13) and (3,22) we see that

2
1

= == (g 20—

hup S 3(3% + 2u) (3.26)
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vhich suggests that we should have

1
¥ = e *
e T, (3.27)
62
¥a = ee———— (3928)
6(3x + 2u)po

for the preferred material of grade zero,

Using (3.8), (3.27) and the definition of £* we see that

de* 1 % o %
at = Powp, Tix'uy
= 2. 1 4P ( -4 )
p_ 2u Tifp 2H (dgy T Fhy
» »
= 1 4
iyid

¥*
where the last step follows frem the definition of diﬂq Hence our

suggested e* (3,27) satisfies (3.23) and thus can be taken as the energy
of distortion, Similarly, *e, can be taken as the energy of volume

change,

In a similar manner for the preferred materisl of grade one dis-

cussed in (c¢), we have from (3.19)

i
oy
*

e* e (3,29)

L]

) (3.30)
*e 6(3% + 2u)p

for the distortion and volumetric energies of deformation respectivelv,
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(e) Discussion of energy density formsg: It is immediate that

the forms (3,13) and (3.19) obtained in the nrevious work are remarkshly
similar except for the specific density term po appearing in (3.13) and
the term p appearing in (3.19)., However, a little reflection shows that
this difference could have been anticinated from the assumed constitutive
equations, For, from equation (3.2) it is evident that if e does not
depend on the specific density p, then the constitutive equations

must involve p in some manner., Likewise, if the constitutive equations
do not involve the specific density, then the energv density function
must depend on p., Of course, it is nossible for both the energy densitv
and the constitutive equations ‘o depend on the density . However

in general, it would be dimensionally inconsistent for both the energy

density and the constitutive equations to be indenendent of p, for if

. A (9 é
TlJ ijkz( s £5 8) g

e = e(0,£&, C)

e(Ti’) o o« o 8n invariant function
of the stress tensor

then (3,2) yields

i371d
° =
34 ° 3 3
4 + e - e =
P25 ° EE Tij) P Myl T M1k
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lence

p [function (7,d)] = funetion {r1,d4)

whiech appears to be dimensionally inconsistent, unless the devendence on

p is merely apparent.

Further comments? Finally, let it be noted that anv other

definition of stress flux could have been used throughout the entire
development of this section so long as its operation on a scalar invar-
iant of 1 is equivalent to the total time derivative of the scalar., Our
choice of ;ij was purely an arbilrary one of convenience, Also for the
energy forms (3,13) and (3.19), the corresponding constitutive equa-
tions (3.8) and (3.15), resvectively, are not the most general, In fact
a far more general class of preferred linear raterials can be character-
ized by each of these energy forms (see Thomas [10]), VWhat we have done
here is simply to give 2 more definite charscterization to a simple

class of materials whose possible constitutive equations are given by

(3.8) ard (3.15).
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IV, Simple Extensional Deformation.

Simnle extensional deformation has been studied by Truesdell (19]
and Green [20] for Truesdell's form of a hvpoelastic hodv of grade
zero, A detailed discsssion of accelerationliess motien, without
approximation, has been given by Truesdell while Green has presented
a dvnamical theorr of simple extension, Seme of their results and
formulation are employed in the work wvhich follows,

(a) A staticel theorv: Consider a homogeneous deformation

field given by
v = a(t)x + blt)

In order for the acceleration fielid to vanish it is necessarv and

sufficient that the matrires 2 and b satvisfv

da 2
— + -
at 8 °
db
3t + &b = 0
which have the solutions
a = A
I + At
B
b = {(h.1)
1 + At

vhere A and B are constants a(0) and b(0), resnectivelw,
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Furthermore, for any sccelerationless motion in the absence of

body forces, the equations of motion are satisfied bv anv snatially

constant stress, Also, for a homogeneous deformation and stress field,

the equation of continuity and the constitutive equations become

ordinary differential equations,

de,

Tt 'pdk,k(t)
at
i = £ [e(t), alt)]
dt ie

Thus, if a(t) is analytic for [t| < c, it follows from the
theorems on ordinary differential equations that there exists a
unique stress field 1(t) taking en arbitrarv value T, when t = 0

Y

analvtic for |t| < ¢, However, if we are to satisfv the dvnamical

equations exactly, a(t) must be given by (4,1,

Simple homogeneous extension is described bv

r-o(t) a 0-%
alt) = (d4;,(t)) = K(t)] 0 ~a(t) 0 ,
0 0 !

b = 0 w, = 0 (k.2)

Hence, for accelerationless homopgenenus extension

Ko .
F(t) = ——

1+ Kot (2)
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olt) = o T K;;;: (b)
K, = X(0) o, = o(0) (c) (h,3)

b. Simple extension of preferred material of grade zero:

Consider the system of field equations

'g'% volev, =0 | (L,b)

i3,y © O (h.5)

;1.1 = 9,,‘0'(2“‘351 A9 (i, €)

diﬁ = iivi,j + Vj,i) qu = %(vi’ﬁ - Vj’i) (h.7)

along with (L.2) and (.4.3). The equation of continuity becomes

2 = _pK(t) [1 - 20(t)] (L.B)
at

or, for accelerationless motion

= 1 o
R e Kt (1 =K o.t)° (4.9)

We seek a solution of the form

0 0 T(t)
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vhere P and T are functions of time alone, For this choice the
equations of motion (4.5) are satisfied identically and we have merely
to satisfy the constitutive equations (4,6), Recalling the definition

of the (~) overator we have

%% = %ﬂ- [2u(=K 0) + A(K = 20 K)] (n)
L= 22 ok 4 (K - 200)] () (ha1)
3t 5
Let
= 52§1§; (h.12)

vhere Y s Poisson's ratio of classical elazticity, The eguations {(L.,11)

become

0

a . o Y - g

at o KTy (r)

a 2 oux | LY. = 2¥9, (b) (4.13)
dt p 1l =2y ’

For a solution of this system to satisfv the equations of
accelerationless motion (equilibrium,) it is necessarv snd sufficient
that o and K be given by (4,3). Hence, no solution for which P = 0
for all time is possible; that is, tensile stress alone is insufficient
to produce simple statical extension., This conclusion agrees with

finite elasticitv theory and does not contradict classical elasticitv
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theory sinece, if o(0) = vy, then
dapP
'&'E‘] =0
t =0

vhich implies that if the initial contraction ratin 9 1s equal to
Poisson's ratio and the initial cross stress P(0) is zero, the
cross stress P will remain very nearlv zero at least for small deformee

tions frorm the reference state st t = 0

For the exact statical solution, recall that

v = o (t)K(t) x

X
v, = = (t) x(t) v
v = K (%) 2

VA

Or, using (4,3)

X
1= oKt
OKO
A4 == .
y 1 - OoKOt
KO
v = b4
z 1+ Xt
(¢}

which, when integrated vield

x = X(1-o0K.t)
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Y(1 = o0oKyt)

<
i

N
i

Z(1 + Kot) (b,1h)

Hence, it is reasonasble to take K t as a dimensionless measure of
deformation, say T, Further, let us take o, = vy, Then, substitution

of (1.9) into (4,13) vields

aP (1 + v)
5 ~2u (1 = ) Ty e
+
P = _2u¥_(.‘1'___ll (__I: - YI— ) (L.15)
1 - 2y 2 3
and
aT  _ 2u 2
r - Toay [(-vr) (0 -y)
3
- 2¢y(1 = yr)(1+T1)]
(1 -v) o 2 1
= 2u(l + v)[1 - 2yl —_—1 y! e ]
[ Y (1 = 2y) 1~ 2y
P o= oop(l+y)reyre &=Y) 4 123 1 1 (n16)
(1 - 2v) 3 1 -2y
where we have set T(0) = P(0) = 0, It is significant to note that no

linear term eppears in the exnression for the cross stress (L4,15) which
bears out our earlier remark,

I1f, on the other hand, we choose to ignore the kinematic require-
ment (L4.3b) on o and set o = vy, we would, if effect, ignore the inertia

of the materisl, (This will be more clearlv seen in a dynamical
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analysis of the problem vhich follows 1lster,) Then by choosing K(t)
according to (4.3a) we have from (k4,13),
P=zo

aT 2
ol 2u(l + y)(1 - yT)

2
T = 2p(1 + y)(r - yr +
a

2 3
‘LY r) (4,17)
3

Observe that this apnroximaste solution for T sgrees with the
exgct solution in the linear terms and the differeqce in the non-linear
terms is demendent on the value of y, TFurthermore, we see from (L4.,0)

that the values of T must lie within

1
-1 < T < =
Y

since the volume is annulled for these limiting values., The details of
these results are illustrated more clearly in the figures on the next

rage,
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While the exact solution of this statical extension problem is
interesting and enlightening, a dvnamical theory of extension sheds

additional light on the problem,
Consider the field equations (L.4), (4.6) and (4,7) along

with the equations of motion for zero body force

= —— . )|
Tij’j p(at + ’i,ij) (4,18)

In addition let us take the homogeneous velocity field

where n and o are monotonic functions of t alone. Hence,

n 0 0
(dij) = |0 n 0 |y wjy= 0 (h.19)
0 0 a

and since p= p(t), the equation of continuity vields

={a + 2n)
p = p.° (4,20)
provided o, = p(0) and a(0) = n(0) = o.
We seek a solution of the form *
- -
P 0 0
=] 0 0
(Tij) Q

0 0 T
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The equations of motion (L4.18) vield

;)P h °2 o0 ° - +

= = o(n® +n)x = po(n + 2y o=le *+ 2n) (a)

X

aT 0. L se . - +

= = o@+dP)z = p(a+ )z e @2 () (4,21

Z .

while the constitutive equations (4.6) vield
3P 3P 3P, ° 3P ° Po . /mo .
e ) —— = — +
Y (zmx + 3;y) n o+ 3=z = [2un + A{2q a)l
© ° . (a + 21’])
= [2un + x(2n + a)le (a)
-(a + 2n)

AL+ ALyx + 3y) = 4 AT .0 o (a0 + (2n + a)le
3t (axx SEV, n Tz Zey, [ uo A n a)]

() (k.22)

Let

‘o
]

Pc(t) + Plfx, Yy 2, t)

=}
]

T, (t) + Tl(x, Yy Z, t)

Then the constitutive equations beconme

dPo . . ((1 + 2n) -
= = [2un +x(2h + o)le (o)
° o o (q + 2n)

dt
T ( 5% X 3y .V) n 52 Zo, (e)
o

aT 3T . aT,
— $ (X Y LAYy o+ Llzg = O (@) |(4.23)
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Recalling equation (L,12)yequations (L.23a, b) can be written as

o ((Y. + 271)
d_P L] ‘Y °

—2 = 2u[n + m—— (27 + a)le- &

-2 [ T & ] (2)

aTr ° Y ° e (0. + 2T:)

- 2 -+ —————— ’ + 2

-E% ne T (on a)le (v) (b,2h)

We seek a solution such that Po 2 0. This is mossible nrovided

n = «Yda, Then

dT o '
-2 = 2ufa + vyale
dt
° (1 - QY)G »
= 2p0 (1 + v)e (4.25)
And
oP v aP oP aP
1 1 1 ° 1
— - —_— Xt e y) + —_——= z = 0
at ye (Bx 3y * 3z
2
3. R 1, aTl . BT] (L,26)
— 'Ya(_...'..x+ V) 4 O emme 2Z2 = 0
at 3x N 9z
N
The general solution of eguations (h,2A) ie
-0
P1 = f(xe'” . ye'® , 28 )
Yo Yo -
'I‘1 = plxe , ye , ze «

where f and g are arbitrarv functions of their arguments and of class

cl. Inspection of the equations of mo*ion (4.,21) leads us to choose

"
P, = px ef®
1 — e
5
Bz ~20
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These will satisfy (L.21) provided

N 2 5. —a
(=ya + vy &)e (#)

o>

o 1+ 2v)a
'}1 = (g + (x?)e( y)
o}

Once again, we see that tensile stress alone is not sufficient
to produce the deformation field of homogeneous simple extension, for
the only solution corresponding to A = B = 0 is the null velocity field
of ; =0, If, on the nther hand, we neglect the inertia terms in the
equations of motion and seek a solution for which T is the onlvy non-
zero stress, then we are led once agein to equations (h.24), Tt can
be easily verified that when o conforms to K(t) of equation (h4.3=2),

equation (h.,2hb) is identical to equation (%,17) and hence we recover

the approximate statical solution.

b}
0
o
o2
®

It may Ve possi menney so ag tao
correspond closely to the exact dvnamical solution of the vproblem,
However, it is anparent that no homogeneous stress and velocity field

will produce simple extensional deformation for this material,

(¢) Simple statical extension of material of grade one:

Consider the system of field equations (L4.4), (k,5), (4.7) and

£ = 1
Tij = 2udij + A(Sijdkk - -{d_kkﬂrij (h°28)

along with equation (4,12). Then using the notation of (}4,2) and (L.10)

the constitutive equations become
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ar ) Y = C 1

T 2uL = = 5 (1 ) (a)

aT L=y = 2Y3 v, Y - 20 )KT (b 4.29)
= 2u( T ) ¥ - 3 (1 - 20) (b) (k.29

As with the material of grade zero, we see that for a solution
for wvhich P = 0, 0 = vy for 2ll time vhich clearly violates the
kinematic requirement (L.3b) for accelerationless motion and we arrive
at conclusions similar to those of the grade zern material, Ignoring

the kinematic requirement on c(t), we obtain as an approximate solution

P =z 0
aT J 1
i fou (1 +vy) - > (1 - 2y)7T] =
1
moo= bu(l o+ Y) f; _(1ar) 2 M- 7] (h,30)

where we nave taken K{%) and T in cccordonce with the nrevious work
and have set T(0) = 0, On the other hand, if we take o(t) and
k(t) in accordance with (4.3), then the exact solution for simple statical

extension becones

ap  _ (1+y) (1 -2y = 3vT)
L+ D) -vT) 5 = -EuY(—l—_—gT)I‘ - > P

P = Sy ey [ 2 ,
3(1 - 2y)(1 - yI) -[(1 Tyt (T - 2)] (4,31)




Sho

'I' B 1 - 2%{ - a
(1 + )1 - vT) %I‘: = 2y (1 + ’YZ (1 « 2y =97 ) = ( 3{11,[,
(l - dy) 2
bu(l + v) (3 = by) ]
= - + (3 = by w yI) i (h,32)
T =30 2v)(1 = v1) (T +1)L/2 1
where we have taken T(0) = P(0) = 0, The correlation between the

approximate and exact solutions is illustrated by the figures on the

next page for the same range of I' as indicated »reviouslv,
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(d) Discussiorn of sirmle extersinnal deformation: The two

materials considered in the preceeding work produce strikingly different
results for simple statical extensionel deformation, This difference
was not completely unexvected because of the inherent character of the
two forms of the constitutive equations, More snecificallv, we observe
from equations (L4.,6) snd (4.9) thet for the grade zero materisl the
stress rate will tend to zero as the limiting values of T are approached.
Hence, one would expect that at these 1imits the stress avnroaches n
finite value as indicated in Figures L.1 and 4,2, On the other hand,
equation (4,28) indicates that as the limiting values of T are annroached
the stress rates hecome infinite and one would expect asymptotic behavior
as indicated by the vertical dashed lines in Figures 4,3 and k.Lk, Thus,
these two materials characterize two distinectly 4ifferent types of
material behavior and vet both are linear materials according to our
usage of the term linear, We can nov aopreciate the generality of

the rate form of the constitutive equations for materials although,

until suitable experimental deste areavailable, it is impossible to sav
what form of constitutive equation best characterizes any narticular

real material,

For the grade zeré rmaterial, Figure 4,1 shows that the aporoximate

quasi-static solution makes the material anpear to be more stiff than
it actually is, Also, for small deformations (un to anproximately

I' = 1/2) the exact and avproximate solutions egree rather well, but
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for larpger T the differences become rather large., I =2ver, it should be
remembered that when we speak of a value of I'y say I'=l for exemple, that
this is comparable to an extension ratio of 100 percent. Thus while we
may sveak of small values of T we are in effect talking about consider«
ably significent finite deformations., Notice that the anproximate
solution indicates a monotoniec increase in stress with increasing deforme
ation while the exact solution spparently indicates the nresence of a
vield noint at which the stress begins to decrease with increasing
deformation, a phenomenon which is not uncormon in solids, Ve
plso see from a comparison of Figures bh,1 and 4.2 that the cross
stress hecomes dominant over the tensile stress for larger I but that
for small I' it is far less effective, an observation in complete
agreement with our previous analysis.

For the grade one material, the exact solution anpears to be
much more sensitive to Poisson'’s rstio, v, tha. ¥or he grade zero
material, With Y = 1/3, the material indicates a yield pnint
vhile for Y = 1/h no yield pnoint is indicated., Also, for the latter
value of vy, the exact and approximate solutions correspond very well
up to deformations of ' = 3, while for vy = 1/3, this correspondence
is good only up to about T' = 1. As with the grade zero material, the
cross stress eventually becomes dominant over the tensile stress, For
this material, however, both of these stresses tend to infinity as the
limiting values of ' are approached whereas these stresses remained

finite for the grade zero material,
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Perhaps the most significant feature of these results,aside from
the demenstration of the great generality of this form of formulation
of constitutive equations, is that the stress-strain relationship, as
thought of by many engineers,is the outcome of the problem end is

therefore predicted by the theory itself. Furthermore, such -minologv

as small rate of loading or long-time exveriment is meaningless since
time hes been explicitly removed from the final result vhich is

stated in terms of a deformation measure,
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V., Uniqueness and Extremum Principles,
Using d'Alembert's Principle [12] let us write the equations
of motion in the form

Tijsj + p(fi - vi) = 0 (5,1)

which represents the resultant effective force on a representative
volume element of the media, Consider now a small, kinematically
admissible, rirtual velocity §v (not a variation) and form its scalar
product with the resultant force (5.1). Then the rate of virtual work

of the media for the admissible virtual veloeitv becomes
/’{Tij,j + p(fi - Vi)} GvidV = 0 (5,2)
v

where thc integral is taken over the instantaneons volume V characterized

by the coordinates X, and time t. By application of the divergence

theorem thie

(t 1Gvi + pfiﬁvi)dv = /(DV&SVidV
’ v

S = . 4
Tijnjévidu + /(ofiﬁvidv /( Tiﬁévlgjdv + /rpviévid\
' h' v

or

ftijé(dij)dV + [oy_ - bvav (5.3)
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The first integral on the left of (5.3) can be intervreted as
the rate of virtual work done by the surface tractions acting on the
bounding surface S5, and the second integral is similarlv the rate of
virtual work of the body forces. As vet, no simnle interpretation
can be mede of either of the integrals appearing on the right side of
(5.3) except to say that the second one results from the presence of
the inertia term in equation (5,1) while the first one would anpear
regardless of whether the inertia term were present or not.

(a) A variationsl principle: Consider the functional

[o;‘_oy_dv +/g»1ds - /ri1d“dv - /ogvy_dv
v S . v

v

[N
i

or

cy
i

/of © ydv o+ /'r © vdS - //rﬁ.v, av —[pv ° vav (5,4}
—-— - -— -— (_1 1’1 — —
Vg

4 S ‘i V’

where we have utilized the symmetry of TiJ and the definition of dij“ Ve
wish to perform a variation of this functional and to avoid confusion as
to what is implied by the variational orerations let us rewrite (5.4)

in terms of some arbitrary initial reference configuration V, and Se
characterized by the coordinates X; and the time t,. Then by use of the

principle of conservation of mass we have

. vy
I, ° ¥ds, = "Ki 3%, av,

Pov ° ¥av, (5.5)

J Pof * ydv, +

<N
w

P
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where T is the unit surface traction measured ner unit of the reference

surface area S, and

Xk o
= — P
My (X,t) -

cxk p Tkﬁ

is the nonesymmetric Piola nssudostress [2] measured per unit ares

of the reference configuration., In this form the variation 6J becomes

& = [oo.f_‘ © dvdv, + [_'.T;o s ﬂzdS,-»/HK,iS(vi,K)dVo
Ve S, Ve
- [ooy_ svdv_ + [,305:_ Cyav s /.5?_0 . vas,
° Vo So
avi °
- / SUK' a—x—: dVO - /0051!_ ° ’Y-dvo (506)
~, i "

(-4

where the comma denotes partial differentiation with resnect to the

XF coordinates, Rewriting in an obvious rotatinn and using the

divergence theorem, we have

8J

o, f, + 1 - o v, })Sv 4V
Z:('° i Ki,K ° i) Vi®le
(-]

+ T -0 n v _dS
£;< o4 Ki °K) i o©

+ -0 + al
(poéfi p&vi GnKi,K)v°'!°
Vo
m - 51’7 o] v :" R
S (C AR LA . (5.7)
S,

In terms of the pseudostress Fx# and the variahles Xi’ the

equations of motion are

[}
o

gy x * PTy = PoVy (5.8)
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and on the boundary

To, = Tgifoy (5.9)

where g{ ig the outward unit normal to the surface So, Hence if we

impose the admissibility requirement that the variations satisfy the

equations of motion then clearly

§J = (o £ + 1 - :f 8v. av
5 o't ki k= %o RO
L]

o]

- 1. n _)das
oi Ki ok’ o

+
AN
S

<

°

Thus, if the state of stress and velocity is such that the equations

-~
(e

]
)
)

ct

}do

on are gatisfied, then

Hence, if we let to be any arbitrary time, we can formulsgte

8 varietional theorem as follows: among all possible velocities v
compatible with the geometrical constraints, among all the stress fields
TiJ which satisfy the equations of motion in the interior and on the

boundary, and among azll the strain rate components diﬁ’ the actual ones

render the functicnsl

3 = [pi . yav + ['_r_ * yiS - /‘rjid“d\f - [oy_ . vav
S
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stationary, With this theorem we are now rrevared to develnp some

minimum theories for guasi-static deformations.

(b} A unigqueness theorem for quasi-static deformations;y Consider

a peneric steze in some nrocess of quesi~static deformation for which

the internal distribution of stress, the material parameters, the shape
of the body, and the bodvy forces are regerded as known, Ve enguire to
knovw under what conditions the velocity field is uniquelvy determined
vhen the traction rates are prescribed over nart of the bounding sur=-
feoe St , geometrical constants are prescrited over the remaining sur-
face S", end the body forece rate is prescribed throughout V. It is
v
assumed that these prescribed rates are= functions of vosition and time
but independent of the velocityy i.e., the changes of the load vectors
are vre-ordained regardless of the ensuing change of shape or nosition,
Suppose thet T, 4 and v denote the actual stress, strein rate,

and velocity field for the bodyv sc that

= T =1 in 1 ‘

Tigg P = 0y Ty =y v (a)
d = ;(v + v, ) inV (v)

i) 27713 3,1

= * \
T m, T¥ on S, (e)
* .

v. = v. on 8 (&) (5,11)

i i v

Por the material we postulate thet there exists a single-valued tensor

relationship of the type
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stress rate = f{atrein rate])

where [ 1s homopeneous of degree one in the strain rate =znd mayv a2lso
depend 2xplicitlv on the current stress and density,
In terms of the non-symmetric Pinla nseudostress, saustions

(5.112) and (5.1le) become

m +pf = 0 in ¥ (a)

Ki K o i o

LIS = T ¥ s b J12

K13, K ol on ot (b) (5.12)
where an = nKi(x, t), Hence, diffzrentisting (5.17) with

respect to time snd emnloring en obtvious rniotation we have

i +p T = 0 inV {a)

Ki K o i o

T = 7% on S (v) (5.13)
Ki oK oi °t

for econtinuing eguilibrium,
Surpose that there are twn solutions S snd S' to the stated

problem, If

AS = § = 8¢

denotes tna differcacs of anv corresnonding ausentities, then clearly




{4y = O in v
¥
A s o]
T ¥ o
A = Al 4 = nn 5
P i oK ot
* S
Av, = Av, = 0 on S (5.1h)
1 + oV

Henece, recalling thet for a cussi-ststic orecess

we see; by use of (5.13) »nd {5.1k) thet far the field AS we mo~* rave

[ an (ay 4y = { Afi, Av.n 4% = D
by KA i),K 5 Ki® 71" K" e
T y
~a
Therefore, a sufficieat condition for uninuenaess is .
A {av. ) ar > 0 (5.15)
ki 1,K
Yo

for all pairs of coatinuous differentiavle velozity fields taking nres-
crived values on Sv; i.,e., the field Avi vanishes on 8v, The AﬁKi are
functions of the respective velccitv gradients and may not be in equili=-
brium nor make the traction rate venish on Sto The reverse inequalitv
would also give a sufficien* unicuenessz condition but will not be considered
here,

This sufficient, bhut not necessarv, uninuenass criterion is similar

to that obtained by Hili [1h, 15] excent thet Hill's formulation is in
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terms of & nominal stress using convected coordinates (see appendix for
e brief discussion of this). While convected coordinates have several
manipulatory advantages, the writer feels that treir use tends to
obscure the physical interpretations of the guantities involved and has
contributed to erroneous conclusions sometimes drawn from Hill's work,

(¢) A minimum principle for quasi-static deformations: Our frrmu-

lation will now be developed further for a class of materials for

which there exists a stress rate potential such that

X = x(vi K) (5.16)

vhere y is a horniogeneous function of degree two in the velocity gradients,
devending alsoc on the current stress and densitv, x is assumed to have
continuous first derivatives and at least sectionally continuous second
derivatives. Also when aquations(5.16) have a2 unique inverse, then bv

means of the Legendre dual transformation there exists a funection Xeo

such that
LR YA
=
?)S( My (2)
where .
= 1 - n b
Xe ki1, K x! 1K ( Ki)] (v)
or by Euler's :
theorem X, = 2X = X x(m_.) () (5.17)
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Consider the functionsal

o) = fatv o - o reww o [ s (sam)
v ik o o G o ot
° v. Sot

[

flong with equetions (5.13)

Theorem 1. TFor anv solution, unique or not, the class of contine

uous differentiable veloecity fields satisfving {5.16) and taking pre-

scribed values on S make tha funetionsl (5.18) stationarv,
v .

To nrove this we srne

o ’ 2%
/féxdv - }[‘p £ Ayav o /f T ¢ &ydS
¥ o o ~ o = ot

L4 i Vo got

&G

]

1t
s\
3 e
(o]
<
Q.
n
o
]
o<\ .
o
-4
Os
<
jo]
=
1
<
(=4
fad

mo 8w, (o f 8v.av =
MK 1o Jy © 11
(]

since S8v = (Oon 8

and by virtue of (5.13),
i oV

Hence, for this class of
velecity fields we see that the first varistien of Giv} vanishes which is

necessarv and sufficient for G tn be stationarvy,

Furthermore, under the hvpothesis stated for the existence of Xos

by uge of (5,17b) we can obtain a sscond functional

B f‘ 3 ~
Wit = [ e, - [ i (5.19)
Ki Sov (o] [»] ; > e I

e
Yo
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Theorem 2, The cliass of continuous ditrferentisble nseudostress

fields satisfying (5.13) and (5.17) make the functional (5.19)

stationary,

To prove this we see

U

W
=
Q
e
=~
o
$®
o
7
Q
<
!

H
Os
=3
<
je ¥
9s]
]

BN ST
<:
fe 29
=4 o
2
<

¢ cl ov i, K ¥Xi o
oy
_ *
féT v as - §T v as 4+ s v.av
ol ov i 1 o Ki ,K 1 o
ov vz

= 0
by virtue of (5.,14) Hence for this class of pseudostress fields the

first variation of H{HK‘} vanishes and H is therefore stationary for
¢!

these fields,

Notice that the uniqueness condition (5,15) can now be written

a8
3 A av_ >
[A -BT\%- ) ( Vi)’K Ve 0 (8)
v, i,K
or
c -
A.__?L_. Al av, > 0 (v) (5.20)
3“;{1

In what follows, let T and e, a=1, 2, . . . 9, denote the

nine unsymmetriceal components of HK‘ and v, _, resnectively, Then,
i i,

recalling the assumed continuity conditions en y, we have by the mean

value theorem



3x(e’) axle) o 3 xle) .
de T de 55 5. (© g~ ee) (5.21)
o o a B

where e'Ot and e, helong to any two admissible velocity fialds and

ea is on the'loin' of those two fields, Now let us assume that the

uniqueness criterion (5,208) is fulfilled and let e, correspond to the
unique solution S of the nroblem stated in the first paragranh of

(V-t), Then obviouslv

\b m .

af~

2
[ g'é'x_l (e'y ~ey)le’g = eg)av > o
vo o B

from which, by 2 re-apnlication of the mean value theorem, we have

; ax(e) '
){n{%(e ) = xle) - ~32;- (e " eu{} dvo > 0 (5.,22)
Vo

for permissible e'm » Thus we have for anv kinematicallv admissible

velocity field v' ,

Gl{y'y - iy}

]
<

L] 4 o *
x{e')av = p £ ovay - /T * ¥*3s
v o v o™ - o o - ot

(3 lget
° ° %
-[x(e)dv + /p*‘-vdV-[T ° vds
v, © o (] [}
[ (-]
= [[X(e') - (e)] av -[p £ (v' ¢ v)av
v [o] [o] o]
° Ve
oo
- j T* o (v - v) a5
ﬂst ° - ot
0

But, recalling that the stress field associated with S satisfies (5.13)

and (5.16), we have
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0

G{v'} - Gly}

‘ ¢
E' - \ - T v, - v, dV
[[x( ) = x(e) Ki(vl 1)’K:, .
AL
(o -

° »
+ T (v, = v ))dS - f»T& (v." = v,)as
49 oi i 1 5 Jew ol 1 ot
) 'Sot
> 0]
¥
whizh follows frem (5.22) and the fact that (v. =-v) = 0ens ,
i ’ oy

Thus we arrive at the following theorem,

Theorem 3, Of a1l the kinematicallv admigsible velocity fields,

the unique field which satisfies (5.13) and (5.16) makes G{v}

an
absolute minimum,
Similarlv, sunpose that the unioueness eriterion (5.21b) is
fulfilled. Then one has
l’\r.-.- - ¢
© o dx n 2 ° 0
/ LX (n*) = x {n) - -—“i—l (i -1 )] av > 0 (5.23)

Yo

corresponds to the unique solution of the nroblem, Then
o

>

where T
if H“a is any other statically admissible stress Tield satisfving (5.13)

we have as a consequence of (5.23) and (5.17)

H{T' )= 1{R..} = T ey o [x(ﬂ‘)dv
Ki Ki ~o - oV ¢ o
S‘ov IVO
] * L]
- fg'_ v 45+ /xc(ﬂ)dv
oV [o]
75 Vo

i
—
{3
o
1
3 e
R
<
E 3
&
[¢]
<
[}
< N
- >
’:?n
~
)
>
=
~
e}
<3



where we have used the fact that (“'Fi - ﬂKi) satisfies (5.14) and

v = xf on 8 , Thus we arrive at the following theorem,

Theorem L, Of all the staticallv admissible pseudostress fields,
the unique one which satisfias (5.17) =nd the kinematic conditions makes
H{" '} an absolute maximm.

Ki

Notice that theorems 3 and 4 are analogous to the minimum
theories nf elastostetics (see Chapter I), Also, in view of the fact
that if both x and x exist and both (5,20a) and (5.20b) are satisfied

(o

T

simultaneouslir, then H

2P}

and & are i

dentical and we have succeeded in
bounding this auantity frem above and below,

(@) Application to linear preferred medis: Of particular

interest to us is the form which the uniqueness and minimum theories
assume when the material has a linear homogenecus constitutive equa-

tion of the form

°

m = C .2l
Ki KiLj 4L (5.24)

wvhere the coefficients mey devend on the current stress and densitv,

With this constitutve equation the stress notential is

X = 5 Ckings kU, (5.25)
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with the restriction that

= 0
CKiL.‘i LiKi (5.26)
Also, if (5,2h) is required to have an inverse, then we have
= D n o2
Vix T Pking"y (5.27)
and
= oo 8
= o ! Tl o
Xq > Priny"xi "y (5.28)
with the restrictions
D__. =D
Kil} LiKi
= e Do = 0
PLaki®eime = CoskiPrawr T S lar (5.29)

In view of (5.2L4) and (5.27), the differences between anv two

stress rate and strain rate fields are related bv

°

Blys = Crirg®vi,p

Avy x = Dkingtl,gs

Hence, if there are two or more distinct solutions to the general

boundary value nroblem, we must have

i
o

L;x(Avi’K)dVo

°
or

]
o

/'xc(AnKi)dvo
v,
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according to the work preceeding equation (5.15). Consequently by
virtve of (5.,20s) and (5.20b), a sufficient conditinn for uniqueness
is either
/x(vé MLV (5.308)

l’ [o]
%

for all velocity fields with the ansalytic properties of the actual

field and vanishing on S v but not identicallv zero, or
[o]

/{;XC(HK,i)dVo > 0 (5.30b)

for 211 continuous stress-rate fields in equilibrium with zero body

force in V° and zero traction-rate on Sot’ but not identically zero,
It is important to note that unless x is strictlv convex

[15], the uniqueness criteria (15.20a) and (15.20b) differ and need

not bve satisfied, simultaneously. Bv strictly convex we mean

x(e') = x(e) = axle) (e'a - ea) > 0 (5.31)

aem

for ell admissible e' not identicalwithe . Then, assuming (5.31)

to hold, we have from (5.17b)

Xe (M) = x (M) =7

or
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s * a)( (ﬁ) - -
x (M) = x (M) - o, (n'a - M) >0 (5.32)

Herice, (5.31) implies (5.32) which, in turn, implv (5.22) and (5.23)
respectively. Thus under this condition the uniocueness criteris
(5,208) and (5.20b) hold simultaneously,

In particular, for linear materisis the requirement of convexitv
is tantamount to the nositive definiteness of the coefficient matrix
(CKiLj) and the inverse coefficient matrix (DKiLj)°

Finally, while we have a formulation of x, Xa and the unique-
ness criteria for a linear material with the form (5,24), it is
important that we interpret these results in terms of the true stress
1 and 8 true stress-rate form of the constitutive equation. To do

this, recall

n t = =— 0 A
“Kﬂ(x’ ) T Tij(x, t)

Thus, differentiating both sides with respect to time

. ? K po aXK po aiﬁ Po
= (e ) 21, + === ) - T
Ki © % o 1) 0 B3x o 48 T Bxy o 4
_-i}i}g v 2‘O-'[ + a—x"‘ Oo V. T + ;XK po ;
8%, 51 pid dxg o MU xg P

(5.33)

Now, if we let the arbitrarv referenct time t_ corresnmond to the

instantaneous time t we have



= - KiVm,m'iy * GKiTi_j (5.34)

Mes Ko 2,144 S

Because of the anpearance of the term containing Vi let us
n,

choose Truesdell's form for the stress-rate equations,

~ <
1l

2 + R - . -
i} Tl‘j Tl:j m N Tlpvﬁ WP ijvi P
= Aijkl(p’ T)dk2
= Miyaave
Maks T Pyikg T Apygk
*
or
Q - o
i Bijk.@vl,k {5.35)
vhere
Bimee ® Tolin t o Tt TS o Aing (5.36)
Sibstituting (5,35) and (5.36) into (5.34) vields
Tei = SkiTiaTy,e * M lkiVax (5.37)

But, from (5.,2h), at t = ¢

ke = CRaLivi,L = Cranivi,efeg (5.38)
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Thus from (5.37) and (5.38) we have

Cranifie T Mraeifme t Tiy%11%k
or, dropping the unnecessary distinetion in the subserints

- R
Ceret T A el (5.30)

wvhich clearly satisfies the required svmmetrv in ky, 21 providea

Ak19i does. lHence, for any instant t, we have now formulated the

form of y, and hence Xos in terms of the coefficients /\_i As

Jeg®
a result, we have also arrived at an instantaneous formulation of the

unigqueness and extremum nrincivles., Thus we have succeeded in
bounding the functionals G and H of theorems 3 and L, for any

particular instant oI the motion,

.

- ~n - PRS- - R S
All TLLITUWL WT o oLeLvos

R NV

integral of the form

écijkzvj ek 9 (5.40)

where Ci1k2 are functions of the instantaneous s*ress and densityv,
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VI, Comments and Conclusions

As stated in Crapter I of this naper, the obilect of this investigation
was to identify and resolve some of the individusl vroblems related
to the overall problem »f multi-phase medie with narticular attention
devoted to linear nreferred media., Ve will now review the results of this
investipation in relation to the stated objectives.

First of =2l1, let i£ he understood that the formulation of consti-
tutive equations in terms of stress rates and strain rates is an attemnt
to exnlain or predict the dvnamical response of deformsble media to
various loading conditions and kinematic restraints; i.e., resolution of
the first and second fundamental boundary value problems, The formula-
tion is exact and dynamically admissible and is valid for all tvpes of
media whether thev bhe solid, fluid, plastic, ete,, ana, i1n Tact, such
special classification of behavior can be nredicted from the solution of
the equations governing the deformation process, Furtherriore, the
reference configuration can be selected arbitrarilv so long as the com=-
patibility and boundary conditions are satisfied, Of course, many tyves
of material behavior are not included in this formulation, most notsbly
the viscoelastic time-denendent type of material resnonse,

Unfortunately, the general form of the constitutive equations,
Stress rate = f(Strain rate)

where f is linear and homogenszous in the strain rate and mav also depend

on the current stress and density, is much too general to indicete clearly
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the multitude of possible mechanical and thermodynamic responses that
can be exhibited by materials with this characterization, Hence it

was felt that a more definite characterization was necessary to provide
a better understanding of such materiasls. We have attempt=d to do

this in two ways: by consideration in Chapter III of the existence

of a deformation energy density function; by consideration in Chapter
IV of the response to simple extensional deformations. In both cases,
twe relatively simple forms of the constitutive equations were used

as simple illustrations of what kind of results can be expected from
these types of materials by either explicitly including or excluding the
density in the constitutive equations,

Under the assumption of the existence of an energy of deformz-~
tion density function it was found that for the two special materials
considered, the energy density could be expressed as a scalar function
of the stress invariants in the one case and as a scalar function
of the density and stress invariants in the other. That these functions
were remarkably similar in form to the elastic energv density for
isotropic materials leads one to conjecture that linear preferred
materials are elastic and vice versa, A little reflection would soon
indicate that this surmise is clearly incorrect. Indeed, Bernstein [15]
has shown that isotropic Cauchy elastic materials are hypoelastic but,
very definitely,that all hypoelastic materials are not elastic, nor are

all elastic materials hypoelastic.
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It must be remembered that our derivation of the deformation
energy density function vplaced no restrictions on the amount of
deformation or stress, Large deformation of real materials
generally is accompanied by,or results from,the irreversihle process
of material flow, Hence it is highly unlikelv that all the work
energy supplied during the deformation process is svailable for full
recovery or is independent of the path as would he the case for
materials which nossess an energy of deformation function such as those
discussed in Chapter 3. However, it is possible for materisls
to possess such an energy density function for values of stresses
or deformations within the neighborhcod of a given configuration
peir . Or, one might consider that just the reversihle part of the
deformation energy is exvpressible in terms of an energy density
function, In anv case, the existence of an energy of deformation
function should not be assumed g priori for real materials under-
going large deformetions, and it is highly unlikely that the consti-
tutive equations of media undergoing large flow-like deformations
can be properly formulated without thermodynemic considerations,

Our results here appear to indicate that real media undergoing

small but finite deformations might well be characterized by linear

rate-type constitutive equations along with the possible existence

of an energy of deformation function,



Of course, the tried and true vy of classifying or identifving
tvoes of real material behavior is by laboratorv exneriment, With
this in mind the author investigated tne simnle extensional deforma-
tior »rocess for the two simmle representative materials chosen,
These results were enlightening for several reasons,

First of all, the results clearly indicated that for such
linear materials tensile (commressive) stresses alone mav not be
sufficient to nroduce homogeneous statical simnle extension {(com=
pression), Or, conversely, the anplication of tensile {comnressive)
stresses 21lone will generaliv not nroduce a uniform homogeneous
deformetion, This conclusion is not too startling when one considers
such readiiv observed deformation vrocesses as necking. Secondly,

A S 3
results defin

f14]

th itely indicated the existence of vield moints and
multiple-valued stress=strain relstions, both of which can bhe
readilv observed in real materials,

Thus we see that this formulastion of material response is at
least in qualitative agreement with ohbserved phenomenological
behavior, The sipgnificant feature, however, is that these nhenomena
are predicted bv the theory and do not have to be assumed » priori,
as 1s usually done in most elasticitv and plasticity theories.

The auestion of whether or not this formulation is in ouantitative

agreement with resl material behavior remains onen because of an

acute lack of quantitative experimental evidence, In this regard

eo.,
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it may be said that one of the most snarselv inhabited areas of
exnerimental mechanics is that of field analvsis of larpe defrrma=
tioens, It is hoped that as the experimental needs becoma more
clearly defined this lack of exnerimental endeavor will disapnear,
In this respect, the author would like to suggest that the - -obl:ms
of simple shear and hvdrostatic leading receive their share of
experimental and anelytical attention,

Insofar as extremum and uniqueness theorems are concerned,
several points are worth mentioning., Our uniqueness theorem has
been formulated in terms of stress rates and velocity fields, The
question might naturallv arise as to the unigueness of the stress
and displacement fields. In this repgard, one has recourse to the
Tr=rt of & penaral unioueness theorem for partial differential equations,
Thus, tune uniqueness theorzms presented in this naner renresent a
maiur contribution to the proper formulation of well set bnundary
value problems for this theorv of material response. The auestion of how
severe are the restrictions which must be imnosed on the constitu=-
tive equations in order for the theorems to be velid »2n only be
answered by application of these theorems to specific porblems,

The same statement anplies to the extremum principles and the suthor
hopes to answer some of these guestions in a subseaquent application

of these theorems to the multi-phase material problem,
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APPENDIX

(a) Time derivatives of tensor fields: In order to fix our idess

in relation to the terminology which has been used in this paper,

h
consider the following definitions.

X o o o fixed spatial reference frame

xI . ., deformed spatial curvilinear coor-
dinates for any arbitrary time t,
referred to the X frame; i.e.,
Eulerian coordinates,

Xi o o spatial curvilinear coordinates referred
to X frame for some initial reference
time t, and may thus be thought of as

material or Lagrangisn coordinates,

The motion of the media is specified by the three functions
xi = xi(Xi, t), everything being measured relstive to the X frame.

Now, define a second frame

Eo o o o o o An arbitrary curvilinear moving frame of
reference

£%(x*,t) . . an arbitrary curvilinear coordinate

L

° Throughout this appendix generalized tensor notation is employed
as distinguished from Cartesian tensor notation used in the body of
this paper. The transformation from the former to the latter is

immediate,
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system moving and possibly deforming in some
. . . i, 3 .
continuous menner wi*h velocity V (x', t), rota-
. i . . i
tion @ (x7, t), and the rate of deformation Dij(x ot).

In effrct wa are considering the £ frame to be noving

and defcrming like a continuous media,

For any time t, the components of any absolute tensor field T
with reference to the £ frame may be determined from the components of
T with reference to the X frame by the usual laws of tensor transforma-
tion, the transformation from fixed to moving system being different
at different times, Then Oldroyd [16, 17] has shown that the time
derivative of this tensor field in the £ frame holding the 5“ coordin-

ates constant has the components in the X frame given by

o o o 1
d,l, (xl . t) QT [ )
o o o 1 ° e ° m l o o o
= + VT
j e o o ’m
dt 2t
mi, i m
< ¢ ¢ ©
-In T - If T1
J Mo o o o] o o o
m i ] ] < i m o o <
+ IDT - ID_T, (A-1)
,j mae o o Mg o o o

where the usual summation convention applies, a comma followed by a latin
index denotes covariant differentiation with respect to the xi coordin=-
ate, and the summation signs denote the summation of 21l similar terms,
one for each covariant (contravariant) index.

In particular, let us look at a few specisl choices of the Ei coor-

dinates,
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(i) Let ga(xi, t) ve rigid and stationary, Then (A-1) becomes

i ° Q v
T (xi, t)
J e o Time rate of change at a
3t fixed spatisl position (a

fixed observer),

°

L. o, s . . .
(i4) Let £ ix', t) be a rigid system moving with no rotation,
i . . 1
but with a velocity at % and tire t equal to the velocity v' of the

material at thet moint, Then (A=1) becomes

aTi 1] ) ¢ DT‘ o o o
e
jo"u mmioos o8 v mlnoo
G S — - VoL = - *
AR 1 - j ¢ o @
ot Dt

Intrinsic or material time
derivative (an observer moves
translationally with the

material, )

(i1i) Let &a(xi, t) be a rigid system moving with the rotation Wy

i i
and trenslational velocity v at x eand time t equal to that of the

material, Then (A-1) becomes

| i
1 e e S °m ¢ 0 e
¢ T = Lw 3 T
P ————— VFJ‘ e o csn 1 m s o o
3t
—Zwi- Tm(} 9 .= '}‘1 L) & o
MY .o e 3 BN

Absolute time derivative (en
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observer translates and rotates

with the materisl),

(iv) Let Ea(xl, t) be imbedded in the media and thus it moves and

Q

deforms with the material with a rate of deformation tensor of di1

Then (A-1) becomes

i * g Q
aT R
i < - © o +) o
J e s o va _Zw°mT1
+ J o o oM j Mmoo o o
ot

i m, i ¢ s 0 i. 0 o o W 3
- zw |Irrn . ° ° + zd T - zalT - Tl ® ° o
oI j o a @ ,1 m., .. m J « o o J e o o

Convected time derivative
(the observer is the

material itself),

I.et us note for future use that the convected derivative can =21so be

written in the form

r‘;‘i 9o Q L] i‘i . L] 9 z m Ti ° Ll < z i Trw ° L] < (A 2 )
A =T, + v - v -

" ° ° . J ° . » ’J n " B < im j ° ° o

which is easily obtained by recalling the definitions of w11 and di?

(b) Time derivative of the traction vector: An important result which

is apparently overlooked in much of the recent literature in continuum
mechanics is the fact that the convected derivative and the intrinsic
derivative of an absolute vector invariant are identical, For example,

consider the traction vector



86,

daF = tdS

where E‘is the stress vector, In convected coordinates this becomes
aF =o*Pnasg = aF (0, t) (A=3)
where the greek indices refer to tensor elements relative to the

o i
convected coordinates 6 . Similerly, in fixed coordinates x we have

dF = ci"nidsg.1 = aF (x, t) (A=)

In addition, we have the relastions

i .
x = x(8,¢t) or 8% = 0%x, t)

= = e, (A=5)

Now, taking the partial derivative of dF with respect to time while

holding the convected coordinates A constant, we obtain

2 [aF(0, £)] = 5> (aFlx(8, £),t])

Hence, if at time t the 6% and x~ coordinates coincide, by their own
definitions the left side is the convected time derivative while the right

side is the intrinsic derivetive and thus

“~

(aF) = (dF) (A-6)
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To see this more clearly as well as its imnlications, let us

perform the corresponding operations on (A=3) and (A=l), respectively,

of af
) .0 9 ) S
[dE.6, t)] _ 3o nydsgs + ° 3%_(nad )EB
ot
af d
+ O nadS . (E_e)
of n an B
- p) ‘ aB
{}%;_ vo V¥ o v ,n}“adsﬁa (A=T)

and

o

[ap(x, )] = o

T
nidSE_J + rl"(nlds)gﬂI

*i iin
= {o N o v - cm‘jvi n;asg (A=8)
R 177=y

since 51 = 0, Now, if at time t we choose the convected coordinates

a i o Ld al _ .o B i}
such that ea, = Gix everywhere, then &, ~ Gugi end o = 61 6j0 o
Further
3 (o) ~1J J13 i omd J oim
T +> (g ) = O -V ;m -V o (A=9)
by the definition of the convected derivative and equation (A-2),
Also
B n i3 r
o0 . otdm (A-10)
,71 ’m
an B im |
o > oim,J (A-11)
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Substitution of (A-9), (A-10), (A=11l) into (A=7) results in sn expression
identical with (A-8) which once again proves the identitv of the convected

and intrinsie derivatives of the traction vector,

Similarly we may choose to formulate the traction vector in terms

of the two~point [21] Kirchhoff stiress tensor

aF “B as
by T noad. O&B

K2
1

nOdeoga

. ‘o ces . s k K
where the subscript , denotes some initial time at which x (0, t,) =X =

o K o
6§ 6, . That is, at time t_ the X. and 8, coordinates coincide,
o

Performing the respective differentietion operatinns, we have

. af af
a[dB(6, t)] _ 21__ , 05 g, * " N alS 2 (gg)

2t at ot ¢ o 3t
of
IS SN N s (A=12)
= vy T N o0 056 -
[ °K2‘
[aE(x, £)] = 1 ngpdSeg, (A-13)

Now, noting the two-point charscter of the Kirchhoff stress tensor

R B8
o a6 @ 36 Ke o 30 K2
o= - TS by ot
o

we see from equation (A-2) that at time t

- . K& ]
T{Q - TK _ VQ‘MTKI“ ’(A—lh)
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Then if we let the time t corresnond to the arbitrary reference time t_,

(A=12) snd (A=13) become

[gF + ] ~ - -
3 (6, %) - (dz) = {‘[Kz + vl TKM} 3 (A=15)

3t = o) 30k

(aF) = 1 ngdSg, (A=16)

which, by virtue of (A=1l), are seen to be jdentical.
Pinally, by & similar application of this same procedure, we

can show that if d4F is expressed in terms of s nomineal stress
-— RS ——

0B
F g r
d; O ncad;)ogos

u
2

M .
S noﬁdbowa

Then

(dF)

]
—~
5
] ]
m
0
=
3 =
“a, &
A
E N
~
E=3
]
}_J

il
o+

for any particular instsnt ¢
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